On Independent Domination Number of Graphs with given Minimum Degree
نویسندگان
چکیده
We prove a new upper bound on the independent domination number of graphs in terms of the number of vertices and the minimum degree. This bound is slightly better than that by J. Haviland 3] and settles Case = 2 of the corresponding conjecture by O. Favaron 2].
منابع مشابه
Roman k-Tuple Domination in Graphs
For any integer $kgeq 1$ and any graph $G=(V,E)$ with minimum degree at least $k-1$, we define a function $f:Vrightarrow {0,1,2}$ as a Roman $k$-tuple dominating function on $G$ if for any vertex $v$ with $f(v)=0$ there exist at least $k$ and for any vertex $v$ with $f(v)neq 0$ at least $k-1$ vertices in its neighborhood with $f(w)=2$. The minimum weight of a Roman $k$-tuple dominatin...
متن کاملOn the independent domination number of graphs with given minimum degree
We prove a new upper bound on the independent domination number of graphs in terms of the number of vertices and the minimum degree. This bound is slightly better than that of Haviland (1991) and settles the case 6 = 2 of the corresponding conjecture by Favaron (1988). @ 1998 Elsevier Science B.V. All rights reserved
متن کاملA note on independent domination in graphs of girth 5
Let G be a simple graph of order n, maximum degree ∆ and minimum degree δ ≥ 2. The independent domination number i(G) is defined to be the minimum cardinality among all maximal independent sets of vertices of G. The girth g(G) is the minimum length of a cycle in G. We establish sharp upper and lower bounds, as functions of n, ∆ and δ, for the independent domination number of graphs G with g(G) ...
متن کاملSome Results on the Maximal 2-Rainbow Domination Number in Graphs
A 2-rainbow dominating function ( ) of a graph is a function from the vertex set to the set of all subsets of the set such that for any vertex with the condition is fulfilled, where is the open neighborhood of . A maximal 2-rainbow dominating function on a graph is a 2-rainbow dominating function such that the set is not a dominating set of . The weight of a maximal is the value . ...
متن کاملOn reverse degree distance of unicyclic graphs
The reverse degree distance of a connected graph $G$ is defined in discrete mathematical chemistry as [ r (G)=2(n-1)md-sum_{uin V(G)}d_G(u)D_G(u), ] where $n$, $m$ and $d$ are the number of vertices, the number of edges and the diameter of $G$, respectively, $d_G(u)$ is the degree of vertex $u$, $D_G(u)$ is the sum of distance between vertex $u$ and all other vertices of $G$, and $V(G)$ is the...
متن کامل